Seminar | Organizer | Title & Abstract | |
---|---|---|---|
Strickland 310 | Samuel Walsh | Stability of the compacton waves for the degenerate KDV and NLS models This talk is based on the degenerate semi-linear Schrödinger and Korteweg-de Vries equations in one spatial dimension. We construct variationally special solutions of the two models, that is, standing wave solutions of NLS and traveling waves for KDV, which turn out to have compact support, hence compactons. We show that the compactons are unique bell-shaped solutions of the corresponding PDE's and for appropriate variational problems as well. We also provide a complete spectral characterization of such waves, for all values of \(p\). Namely, we show that all waves are spectrally stable for \(2<p\leq 8\), while a single mode instability occurs for \(p>8\). This extends the previous work of Germain, Harrop-Griffiths and Marzuola, who have previously established orbital stability for some specific waves, in the range \(p<8\). This is a joint work with Atanas stefanov and Sevdhan Hakkaev. |
|
Strickland Hall 310 | Samuel Walsh | Spectral analysis of the traveling waves of the CH-KP equation under transverse perturbation The Camassa-Holm-Kadomtsev-Petviashvili equation (CH-KP) is a two dimensional generalization of the Camassa-Holm equation which has been recently derived in the context of shallow water waves and nonlinear elasticity. In this talk we will discuss the stability of the one-dimensional traveling waves, solitary or periodic, with respect to two dimensional perturbations which are periodic in the transverse direction. We show that the stability or instability depends on a sign parameter of the transverse dispersion term. In particular, a nonlinear instability of the one-dimensional solitary waves of any size can be proved for the so-called CH-KP-I model, while for one-dimensional periodic waves we are able to obtain spectral instability for small amplitude CH-KP-I waves. This is a joint work with Lili Fan, Jie Jin, Xingchang Wang and Runzhang Xu. |
|
MSB 110 (note the non-standard day) | On containment of trace ideals in ideals of finite projective or injective dimension Motivated by recent result of F. Perez and R.R.G. on equality of test ideal of module closure operation and trace ideal, and the well-known result by K.E. Smith that parameter test ideal can never be contained in parameter ideals, we study the obstruction of containment of trace ideals in ideals of finite projective (or injective) dimension. As consequences of our results , we give upper bounds on m-adic order of trace ideals of certain modules. We also prove analogous results for ideal of entries of maps in a free resolution of certain modules. This is joint work with Souvik Dey. |
||
Math Sciences Building 111 | Peter Pivovarov | The compactness of multilinear Calder\’{o}n-Zygmund operators.
|
|
Math Sciences Building 111 | Peter Pivovarov | Update on singular integrals and entangled dilations We discuss various results on singular integrals adapted to entangled dilations from the past two years. The existing results are mostly on the so-called Zygmund dilations that constitute the simplest intermediate dilation structure lying in between the classical one-parameter setting and the multi-parameter setting. We start with an overview of the subtle optimal weighted theory in the Zygmund case, the techniques behind that, and the implications these have for further results, such as, commutator estimates. We then discuss the more recent multilinear versions of this theory, the current limitations and, time permitting, some possible further directions and challenges in the area. |
|
Math Sci 111 | Peter Pivovarov | Boundedness of the bilinear fractional integral operators on multi-Morrey spacesSpeaker: Naoya Hatano (Chuo University, Japan) | |
MSB 110 | The Picard group of the stack of pointed hyperelliptic curves The problem of computing invariants of natural stacks of curves has a long history, starting from Mumford's seminal paper on the Picard group of the stack of 1-pointed elliptic curves. The Picard group of the stack \(\mathcal{M}_{g,n}\) of \(n\)-pointed smooth curves of genus \(g\geq3\) was later computed over \(\mathbb{C}\) by Harer. We study the closed substack \(\mathcal{H}_{g,n}\) in \(\mathcal{M}_{g,n}\) of \(n\)-pointed smooth hyperelliptic curves of genus \(g\), and compute its Picard group. As a corollary, taking \(g=2\) and recalling that \(\mathcal{H}_{2,n}=\mathcal{M}_{2,n}\), we obtain \(\mathrm{Pic}(\mathcal{M}_{2,n})\) for all \(n\). Moreover, we give a very explicit description of the generators of the Picard group, which have evident geometric meaning. |
||
MSB 111 | Samuel Walsh | On some maximum principles for P-Functions and their applications In this talk we will survey some old and new results on maximum principles for P-functions and their applications to the study of partial differential equations. More precisely, we will show how one can employ the maximum principle in problems of physical or geometrical interest, in order to get the shape of some free boundaries, isoperimetric inequalities, symmetry results, convexity results and Liouville type results. In the first part of the talk we'll be mainly focused on some overdetermined problems, while in the second part of the talk we'll present our contributions to some Monge-Ampere type problems and eventually discuss some open problems. |
|
Math Sciences Building 111 | Peter Pivovarov | Wavelet representation and Sobolev regularity of quasiregular maps Extending the Sobolev theory of quasiconformal and quasiregular maps to subdomains of the complex plane motivates our investigation of Sobolev regularity of singular integral operators on domains. We introduce new paraproducts which lead to higher order T1-type testing conditions. A special case provides weighted Sobolev estimates for the compressed Beurling transform which imply quantitative Sobolev estimates for the Beltrami resolvent. This is joint work with Francesco Di Plinio and Brett D. Wick. |
|
Zoom | Peter Pivovarov, Samuel Walsh | Solvability of some integro-differential equations with the double scale anomalous diffusion in higher dimensions The work is devoted to the studies of the existence of
https://umsystem.zoom.us/j/94101463494?pwd=NDJaR21PUCtVM0tQWUt0YlNFTmw0UT09 Meeting ID: 941 0146 3494 |
Pagination
- Previous page
- Page 5
- Next page