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ABSTRACT. Orbit recovery is a central problem in both mathematics and applied sciences,
with important applications to structural biology. This paper focuses on recovering generic
orbits of functions on R™ and the sphere S"~! under the rotation action of SO(n). Specif-
ically, we demonstrate that invariants of degree three (called the bispectrum) suffice to
recover generic orbits of functions in finite-dimensional approximations of L?(R"™) obtained
by band-limiting the spherical component and discretizing the radial direction. In particu-
lar, our main result explicitly bounds the number of samples in the radial direction required
for recovery from the degree three invariants. From an application perspective, the most
important case is SO(3), which arises in many scientific fields, and in particular, plays a
central role in leading structural biology applications such as cryo-electron tomography and
cryo-electron microscopy. Our result for SO(3) states that considering three spherical shells
(i.e., samples in the radial direction) is sufficient to recover generic orbits, which verifies an
implicit conjecture made in [5]. Our proof technique provides an explicit, computationally
efficient algorithm to recover the signal by successively solving systems of linear equations.
We implemented this algorithm and demonstrated its effectiveness on two protein structures.

1. INTRODUCTION

Orbit recovery problems lie at the intersection of invariant theory and practical scientific
applications, in particular in structural biology [7]. A prototypical example is the multi-
reference alignment (MRA) problem, where the goal is to recover a signal from noisy obser-
vations subject to random group actions [6, 5, §]. Invariant polynomials have emerged as a
powerful tool for signal estimation in this setting, as they bypass the need to estimate the
unknown group elements, a task that becomes particularly difficult in high-noise regimes.
Remarkably, it has been shown that, from a statistical standpoint, this approach is opti-
mal for signal recovery in such regimes [2], [I]. Beyond MRA, the problem of constructing
polynomials that separate all orbits in a representation has been studied for over a century,
with significant advances made in recent years. See for example [19, 21], 20]. In applications,
however, it is typically only necessary to separate orbits almost surely or generically. Recent
work has demonstrated that the number and degrees of polynomials required to separate
generic orbits is often much lower than those necessary to recover all orbits [5], 25 [16, 23].

The simplified, and most studied MRA model, is when the group of circular shifts Z;, acts
on RE. In this case, it was shown that a generic signal can be recovered from the third-
degree invariant [8, 35]. Follow-up papers extended the analyses to more intricate groups
and transformations, such as SO(2) [33], 22], the dihedral group [11, 23] and dilations [40];
see [0] for the presentation of a wide range of different cases.

Although recovering an orbit from invariants of degree three would seem to be an in-
tractable computational problem due to the difficult nature of solving systems of polynomial
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equations, several of the examples that have generic degree three separation also have effi-
cient and provable algorithms. For example, in [§] a series of efficient algorithms, including
frequency marching and semi-definite programming, were designed for the case of Z; act-
ing on RE. A Jennrich-type algorithm for the same case was designed in [35] and this was
extended to the regular representation of any finite group in [24]. Spectral algorithms were
also designed in [18]; see [1I, 22] for related algorithms.

In this work, we study representations of SO(n) of the form

(1) Vi = (L(S" )",

where L?(S" 1)}, refers to L-band-limited functions on the (n — 1)-sphere. Our goal is to
determine conditions that ensure that invariants of degree three can recover the orbit of a
generic signal in V. Invariants of degree three are also referred to as the bispectrum, and we
use the two terms interchangeably. We follow a frequency marching strategy, first suggested
by the authors of [5] and also used in [32]. To derive the theoretical results, we use a small
subset of the degree-three invariants to recursively solve the components of higher frequency
from previously solved invariants of lower degree. Precisely, the invariants we consider give
rise to linear equations for the component of a signal at higher frequency with coefficients
determined by the lower frequency components. The main results of this paper, Theorem [2.1]
gives a bound on the number of shells R (i.e., samples in the radial direction) as a function
of n and L needed to ensure that we can recover the generic orbit from invariants of degree
at most three. The proof is based on showing that the set of linear equations we consider
always has full rank. The main result is presented in Section [2| and proved in Sections
and [l

Section [5] is devoted to the analysis of the n = 3 case, the main application of our work.
The problem of identifying an unknown signal in R? up to rotation by an element in SO(3)
occurs in a number of contexts, including two related techniques in molecular imaging, cryo-
electron microscopy (cryo-EM) [34, 29] and cryo-electron tomography (cryo-ET) [37]. For
the group SO(3), our main result, Theorem [2.2] states that R = 3 shells (independent of L)
are sufficient to recover the generic signal in (L?*(S?)r)3, for any L, from invariants of degree
at most three. This affirms an implicit conjecture made in [5] and the bound is known to be
optimal.

In Section @ we implement the proposed frequency marching algorithm for SO(3) to re-
cover the orbits using degree-three invariants. Numerically, there is no reason to discard any
of the available equations. Leveraging all of them allows us to implement a numerically sta-
ble, frequency-marching algorithm that provably recovers the signal by successively solving
systems of linear equations. We demonstrate the effectiveness, efficiency, and robustness of
our approach for two molecular structures in the Electron Microscopy Data Bank (EMDB).

2. PROBLEM FORMULATION AND STATEMENT OF RESULTS

2.1. Formulation of the problem. Recall that a polynomial f € R[zy, ..., x,]is harmonic
if Af =0 where A =>"" E;d—; is the Laplacian. Since the Laplacian is rotation invariant,

the translation of a harmonic polynomial by a rotation is again a harmonic polynomial. We
denote by H, the vector space of homogeneous harmonic polynomials of degree ¢ with the
action of SO(n) by rotation. Since a homogeneous polynomial is uniquely determined by its
values on the sphere, we view elements of H, as spherical harmonic polynomials.
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The space of homogeneous polynomials of degree ¢ on S™ ! decomposes as an SO(n)
representation into irreducible components as

1£/2]
) Sy (871) = @) He s
=0

Equation yields the following formula for the dimension of H:

) e :dimez(nva—l)_(nﬁLé—?))'

n—1 n—1

When n = 3, then my, = 2¢ + 1 and for general n we have that m, ~ O(¢"~2).

A basic result in harmonic analysis states that we have a decomposition of SO(n) repre-
sentations L?(S"™ ') = @3 H,. When n = 3, the representations H, are the usual spaces of
spherical harmonics studied in the physics literature; see for example [30], 4]. We denote the
finite sum &}, Hy as L*(S" '), and refer to this finite-dimensional representation of SO(n)
as the space of L-bandlimited functions on the (n — 1)-sphere. In this work, we consider
the finite-dimensional SO(n) representation of the form (1)), which we view as a discrete
approximation for L?(R"), as a representation of SO(n). Our goal is to determine bounds
on R—the number of spherical shells—which ensure that the generic signal f € V;, can be
recovered from invariants of degree at most three.

2.2. Main results. We are now ready to present the main results of this paper. The proofs
are provided in Sections[d] and Section 5] and a technical background is provided in Section [3]

Theorem 2.1. Let Vi, = (L?(S™ 1)1)® be the finite-dimensional approzimation of L?(R")
by functions which are defined on R spherical shells and L-bandlimited on each shell. If
R > %, for all £ > 1, where dim Hy is given in (3)), then the O(n) orbit of a
generic real valued f € V is determined by SO(n)-invariants of degree at most three.

In the case of SO(3), the most important case from the scientific perspective, we can
eliminate the reflection ambiguity, and we obtain the following result. Importantly, in this
case, only three spherical shells are required, independent of L.

Theorem 2.2 (The SO(3) case.). If R > 3, then for any L > 0 the invariants of degree at
most three separate generic orbits in (L*(S?)1)%.

Theorem improves the linear bound of R > L + 2 given in [25] and proves that the
hypothesis of [, Theorem 4.19] is always satisfied when R > 3, thereby proving an implicit
conjecture made there. Moreover, the bound R > 3 is optimal since it is known that if R < 3
then invariants of degree at most three cannot recover signals with small band limit [5]. It
is an open question as to whether or not there is a constant multiplicity (independent of the
band limit) so that degree 3 invariants recover a generic orbit for SO(n) with n > 3.

2.3. Applications to sample complexity ananlys in multi-reference alignment. The
multi-reference alignment (MRA) model entails estimating a signal f in a representation V'
of a compact group G from m observations of the form

(4) Yi=9if+ei
where ¢1,...,9n € G are random elements drawn from a uniform distribution over the
group G, and g; ~ N(0,0%I) are i.i.d. realization of a Gaussian noise with variance o?.
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The goal is to estimate the signal f from yy,...,y,,, while the group elements are treated as
nuisance variables. Because there is no way to distinguish f from ¢- f, the MRA problem is
an orbit recovery problem. This model was first suggested as an abstraction of the cryo-EM
model [7], and the problem has been studied in more generality as a prototype of statistical
models with intrinsic algebraic structures, e.g., [6l 5 [9].

Sample complexity refers to the number of observations required to accurately estimate
a signal. It was shown that the sample complexity of the MRA model, in the high noise
regime o — 00, is determined by the lowest order moment that identifies the signal [2, [].
If the distribution over the group is uniform, then the moments are equivalent to invariant
polynomials. In particular, as m, o — oo, a necessary condition for accurate signal recovery
is that m/o?? — oo, where d is the lowest order moment of the observations that determines
the orbit of f uniquely. For example, if the first and second moments do not determine the
signal, but the third moment does, then m must scale faster than % for accurate recovery.
Based on this result, beginning in [5], the problem of identifying representations of compact
groups for which the third moment can determine generic orbits has been studied by a
number of authors [16] 25] 23 24, [15].

Immediate corollaries of Theorem [2.1] and Theorem [2.2] are the following;:

Corollary 2.3 (The sample complexity of multi-reference alignment for SO(n)). Con-

sider the MRA model with ¢ — oo, where V = (EBKL:OHg)R and G = SO(n). If

R > %ﬁﬂm_l), then the minimal number of observations required for accurate recovery

of the O(n) orbit of f, regardless of any specific algorithm, is m/o% — .

Corollary 2.4 (The sample complexity of multi-reference alignment for SO(3)). Consider
the MRA model with o — oo, where V. = (EBZLZOHE)R and G = SO(3). If R > 3, then
the minimal number of observations required for accurate recovery of the SO(3) orbit of f,
regardless of any specific algorithm, is m/o® — oo.

An interesting extension of the MRA model is the heterogeneous MRA model, where
each measurement corresponds to a translated and noisy observation of one of K underlying
signals (the model in (4)) corresponds to the special case (K = 1)). In this setting, it is not
possible to recover the third-degree invariant of each individual signal; only their average
can be estimated. Nevertheless, recent works [5], [I7] provide strong evidence that, in various
MRA settings, it is possible to estimate the orbits of multiple signals simultaneously (K > 1)
from the average of their degree-three invariants. We conjecture that a similar phenomenon
holds in the model studied in this paper. In particular, a compelling direction for future work
is to establish bounds on orbit recovery from third-degree invariants in the heterogeneous
case, as a function of the number of shells R and the number of signals K.

2.4. Implications to structural biology. The MRA model with G = SO(3) fits the
problem of subtomogram averaging in cryo-ET, which is one of the main steps in recovering
molecular structures in in-situ environments [38]. Since the noise level in cryo-ET data is
extremely high, Corollary implies that the number of observations must be larger than
o® for recovery.

The problem of single-particle reconstruction in cryo-EM follows a similar model, but
we have access only to the tomographic projections of the rotated copies of the signal [7].
Namely, The cryo-EM model reads

(5) yi = P(gi - f) + ¢,
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where Pf(x1,x9) = fm f(z1, 29, 23) is a tomographic projection. Thus, the results of this
paper cannot be directly applied to derive the sample complexity of cryo-EM. Yet, following
the results of this paper, and [5, Conjecture 4.17], we conjecture that for enough spherical
shells, a signal can be recovered from the degree-three invariants in the cryo-EM model.

Conjecture 2.5 (The sample complexity of the cryo-EM model). Consider the cryo-EM
model . Then, if R > 3 is large enough, then the minimal number of observations required
for accurate recovery of the O(n) orbit of f, regardless of any specific algorithm, is m/o® —
00.

2.5. Related work. In [5, Conjecture 4.11], the authors conjecture that if L > 10 then
the generic orbit in L*(S?);, = @& H, can be determined up to a finite list of orbits from
invariants of degree at most three. They also showed that the bound L > 10 is sharp.
This conjecture was recently proved in [26]. Although [5, Conjecture 4.11] is about finite
list recovery, it is possible that for L sufficiently large, the generic orbit in V;, can also be
recovered from the bispectrum; i.e. an orbit can be determined up to a list of size one. To
that end, [32] produces a frequency marching algorithm, which can be used to determine, for
¢ sufficiently large, the (-th frequency component of f € V;,, denoted by f*, from a portion
of the bispectrum and the prior knowledge of the components f? with ¢ < ¢. Each step in
the frequency march requires the solution to a linear system of equations for coefficients of
f*, and the condition number of this system can be bounded in terms of the parameters of
the model. However, the algorithm of [32] cannot be used to directly recover an unknown
function f € Vi, from invariants of low degree, since it requires as prior input an unspecified
number of components of f of low frequency.

We also mention that when the support of the signal on the sphere is small then it was
demonstrated in [I2] that the SO(3)-orbit can also be recovered from the bispectrum. In
addition, a recent series of works showed that recovery from the second moment is possible,
if the signal is known to lie in a semi-algebraic set of low dimension; for example, if the signal
is sparse or is in the image of a deep neural network [13] [9] 3].

3. REPRESENTATION AND INVARIANT THEORY OF HARMONIC POLYNOMIALS

The decomposition implies that H, is the irreducible representation of SO(n) with
highest weight vector ¢L; in the notation of [27, Section 19]. As a consequence, we obtain
the following proposition.

Proposition 3.1. The tensor product H; ® H,_; contains a unique copy Hy.

Proof. The highest weight vector contained in the tensor product H;® H,_; is, in the notation
of [27], iLy + (¢ —1i) Ly = ¢Ly, which appears with multiplicity one. Hence, H; ® H,_; contains
a single copy H, as a highest weight representation. 0

3.1. Invariants of L?*(S"!),. We now describe a collection of polynomial invariants of
degree at most three in Vz := L*(S"1);. To produce these invariant polynomials we first

identify invariant tensors in V2% (for 1 < k < 3) and then symmetriz them to produce

invariant polynomials in Sym” V. To begin, choose an orthonormal basis e, ... e , for each
*Recall that if V is a vector space then the symmetrization of a tensor t = v; ® ... ® v, € VO is the

symmetric tensor St = > ves, (Vo(1) @ ... ® vo(xy). This operation can be extended linearly to define a

projection S: V&* — Sym” V. The symmetrization of an arbitrary element 2 € V® is its image under this
projection.
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summand H, in Vz. An element f € V7 can be represented as an L-tuple f = (f°,..., fL)
and each f* can be expanded as f*=>"", f{et.

Invariants of degree one. If f € V} then the invariants of degree one in f is just the
projection of f to the trivial one dimensional summand Hy; i.e., the only invariant of degree
one is fY.

Invariants of degree two. The representations H, are self-dual via the quadratic form
defining SO(n). Hence Vi, ® Vy, is identified with Hom(Vy, Vy). By Schur’s lemma, (V; ®
Vi)S0m = @l (H,@H,)¢ and (H,®H,)® is generated by the symmetric tensor Y, ef ®ek.
Thus, the invariants of degree 2 in V}, are generated by the quadratic norms; i.e., the invariant
polynomials ", (f¢)?.

Invariants of degree three. Here, we only construct a subset of the degree three invari-
ants that are sufficient to distinguish generic orbits. Our approach to constructing invari-
ants uses representation theory. Specifically, we will use representation-theoretic methods
to construct invariant tensors in (V7)®3 and then symmetrize them to obtain an invariant
polynomial. The following lemma identifies, for each ¢, a set of |[£/2] distinct invariant
polynomials of degree three, which are linear in the ¢-th component vector of f € L*(S™"™1),.

Lemma 3.2. For fized { < L and for 1 < i < [{/2], the tensor product H; @ H, ; ® H,
contains a nontrivial invariant tensor whose symmetrization is not identically zero. Hence,
we obtain an invariant polynomial of degree 3, which we label as I3(i, ¢ —i,¢) € Sym®(H; +
Hy_; + Hg)so(n).

Proof. By Proposition [3.1] the tensor product H; ® H,_; contains a single copy of the irre-
ducible representation H,. Hence, by Schur’s lemma, (H; ® H,_; ® H;)“ is one-dimensional.
To produce an invariant polynomial, let ¢,: H; ® H,_; — H, be the projection onto the
summand isomorphic to H,. If T,...,T,,, € H; ® Hy_; is an orthonormal basis for this
summand, which is identified with the prechosen basis, then > ", T} ® e, is an invariant
in H; ® Hy_; ® Hy. 1f i, — i, ¢ are distinct, then it is immediate that its symmetrization
is non-zero. In the case where ¢ = ¢ — ¢ we note that the summand in H; ® H; isomorphic
to Ha;, necessarily lies in Sym? H;. The reason is that the highest weight of Hy; equals the
highest weight in the (reducible) representation Sym? H; which is (2i)L;. Thus, in this case,
the T} are already symmetric, so the symmetrization of > ", T ® et also cannot vanish. [J

The invariants Constructed in Lemma can be made explicit. Let f = (f*+...+ fL) e
Vi, with f* = >, flet. We can write the projection of f*® f*~* to the summand H,
as Yot C(f1 Z)ka, where C(f%, f©), are bilinear forms in the coefficients {f?, f7~'}.
Precisely, we have

m; Me—q

(6) CUP e =Dk fiffi

s=1 t=1

Here, the coefficients ¢£, are the Clebsch-Gordan coefficients for SO(n). Since the projection
H; ® H,_; — H, is surjective, we know that for generic choice of f;, f,_; the coefficients
C(fi, fo—i)x are identically non-zero and that there can be no linear relations between the

C(f%, f* ") as bilinear forms in f?, ff*. The coefficients of the invariant part of the sym-
metrization of ff® f' ® f are the 1nvar1ant polynomials C(f%, f79ff, which we
denote by I(i,¢ —1i,0)(f%, f74, f9).
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4. PROOF OF THEOREM 2.1]

We view an element f € (L2(S" ™))" as an R-tuple of functions f[1],..., f[R], one for
each of the R shells. Each function f[r] is assumed to be band-limited to frequency L, so
we can write f[r] = Zf:o ffr]. In turn, the function f*[r] can be expanded in terms of
an orthonormal basis {ef[r]}1, as f[r] = Y1, filrletr]. Following similar notation used
in [10], we let A® be the m, X R matrix such that A}, = fi[r]. Our goal is to recover, for a

generic f, the matrices A’ from invariants of degree at most three.
Given a set of vectors {f/[m]} with 1 < j < [¢/2] and 1 < m < R, the invariants
I3(i, 0 — z,ﬁ)(f’[ |, f%[m], f*[r]) determine linear equations for the coefficients f£[r]

(7) ZC Fiml. f e filr] = Ia(i, € — 4, O(F ], £ [nd, f¥Ir]).

Ifi 4, let
SijlRl ={(1,1),...,(LR),(2,1),..., (R, 1)} C [1,R]?,
and let
SiiR ={(1,1),...,(1,R)}.
Consider the system of R(¢ — 1) — ([¢/2] — 1) linear equations for the coefficients f[r];

(8) {ZC Fiml, 7 ) filr] =fs(i,ﬁ—ivﬁ)(fi[m],ff_i[n]7fz[ﬂ)}

1§i§L£/2J7(mrn)€Si,lfi
Proposition 4.1. For a generic choice f’[m] with j < £ and m = 1,..., R, the linear
system has full rank.

Given Proposition 4.1} the system will have a unique solution for f[r] once R(¢ —
1) = ([¢/2] = 1) > dim H,. Since the invariants of degree two determine the Gram matrices
(AHT AL we know Al = (fY1],..., fYR]) up to the action of O(n). Once we choose a

representative for A; in its O(n)-orbit, we can determine the matrices A%, ..., AL inductively
using Proposition [4.1]
Proof of Proposz'tz'on . For fixed i, m,n we have the linear equation

ZC Fiml, F e felr) = Is(i € = 4, O(F [ml, £~ ), £1r]),

where we view Cy(f'[m], f*~'[n]) as coefficients in variables z7 [m,n] = fi[m] ~i[m]. For
distinct pairs (m,n), (m',n') € Si—i[R], there are no algebraic relations between the sets
of mymy_; monomials {zs[m,n] = fz[ 177 ) Yo and {xg [m’, 0] = fim/]f4 ']}, so we
may view them as distinct sets of Varlables Thus, we obtain an |.S; y—;[R]| x m, linear system
whose coeflicient matrix is

O L) Clal L1 . C{at L 1),
o [CHEL LR CHa LR, o C({ad L R,
PO A el 210 - Ot 2. 1] ),
Ol [R 1)) Cat (R ... C{al (R 1]},
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if i £ ¢ —1, and
y C{zl L)1 CHai L]z - C{ai,[L Um,
lotek LR O LR, e Cak L R
if i = k — 4. Here, C({z} ,[m,n]), is of the form Y™ 7" ¢{ xl [m,n]. For fixed (m,n),

the forms C({x},[m,n]),; are linearly independent and thus the matrix M; must have full
rank over the field of rational functions R({z’ ,[m, n]}s;mn). Likewise, as we vary i in the
range 1 < i < |¢/2], the matrix 7

M,

M,

M sz
has full rank over the field of rational functions R({z,[m,n]};s¢mn). This implies that

when we substitute values for the coefficients, we obtain, for generic choices of the functions
fi[n], for 0 <i < [£], a maximal rank matrix. O

Remark 4.2. We can also consider the R? x |k/2] linear system

(9) {Z C(f'lm], f 7 D)efilr] = Is(i, € = i, 0)(f [m], f'[n], ff[rl)}

1<i<[£/2],(m,n)€[1,R]?
If we can show that @D has full rank, then for generic f we can improve the bound in

Theorem to R > di?“/;f. To do this, it suffices to find a single set of values for

the f/[m] for which the system has full rank. However, without explicit knowledge of the
Clebsch-Gordan coefficients, this is very difficult.

5. ORBIT RECOVERY OVER SO(3)

The invariants we obtain for general SO(n) are not given explicitly due to the difficulty
of choosing natural bases for the irreducible representations H, and computing the Clebsch-
Gordan coefficients. However, for SO(3) there are explicit functional bases for the H, and
closed formulas for the Clebsch-Gordan coefficients. For these reasons, it is possible to use a
mix of computational and theoretical techniques to answer orbit separation questions. Before
we prove Theorem [2.2] we recall some known results, which we use in the proof.

For SO(3), we have an explicit decomposition of H; ® H; into irredcuibles for any ¢, j.
Precisely, we know that

i+j
(10) Hi®H = @ H.
£=li—j|
Hence, H, appears with multiplicity one in any tensor product H; ® H; with i +5 > ¢ > i—j.
Using a basis for Hy of spherical harmonic functions Y} (6, ¢), we can obtain a large number
of explicit invariants of degree three:

(11) I3(0y, 0o, G3) (1, 2, ) = Z (= 1)" (lokalsks|1(— k) fil fi2 i

k1+ka+k3=0,|k;|<l;
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where
- (20 + 1)(€+ by — L)l — b1+ ) (Er + Lo — 0!
<€1 my €2m2‘€m> - m7m1+m2\/ (61 +€2 +£+ 1)|
(12)

(—D)F

When ¢35 = ¢ and 61,0, < ¢ but {1 + ¢35 > ¢, then (12]) gives a linear equation for the
unknowns ff in terms of the coefficients f%, 2 in the expansions f = Zr—el flee and

ft = f2242 szjz of f& and f% in spherical harmonics. In [5, Section 4.6.1], the authors
proved, using numerical techniques, that if R > 3 then for generic f the unknown vectors
fr] for 2 < £ < 16 are determined from the vectors f1[m] for m = 1,... R. In addition,
if R > 3, then invariants of degree at most three determine the coefficients f![m] up to the

action of SO(3) (as opposed to O(3)).

Proof of Theorem[2.4. When R = 3, the expression 3(¢ — 1) — ([£/2] — 1) > 2¢ + 1 when
¢ > 6. In particular, this means by Proposition we can determine f*[r] for k > 6 from
the vectors f/fm] for 1 < i < £ and 1 < m < 3. By the results of [5], we know that

invariants of degree at most three determine the SO(3) orbit of the unknown vectors f*[m]
for 1 <i<6. O

Remark 5.1. (The optimality of Theorem The result of Theorem is as strong as
possible in the following sense. If R < 3, then, as previously observed in [5], for L small
enough invariants of degree at most three in V = (L?(S?);)f do not generate a field of
transendence degree equal to dim V/SO(3). In this case, a frequency marching algorithm
cannot be used to recover a generic orbit from invariants of degree at most three.

6. NUMERICAL EXPERIMENTS

In this section, we are interested in numerically investigating the performance of the
frequency marching algorithm and its performance in the presence of noise.

6.1. Setting. Let f € R? be a smooth, real-valued function. We assume that f is band-
limited in the sense that it can be represented using a truncated 3-D spherical-Bessel ex-
pansion:

max

(13) fler,0,¢) = Zzzxemw ) jes(r).

=0 m=—{ s=1
where c is the bandlimit, S(¢) is determined by the Nyquist criterion [14], and jy () is the
normalized spherical Bessel function:

(14) Joalr) = —— ().

|e+1 (s
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with j, the spherical Bessel function of order ¢ and uy s the s-th positive zero of j,. The real
spherical harmonics )" are defined using the complex spherical harmonics:

V2RY™0,0), m >0,
(15) Yi'(0.0) = Y20, 9), m =0,
ﬂ%ng‘(G, ©), m <0,

where the complex spherical harmonics Y,” are defined as

20410 —m)! .
1 Yym — pm ime
( 6) Y4 (97 SO) \/ A (f + m)| [ (COS 9) € )

where P;" are the associated Legendre polynomials with the Condon-Shortley phase. We
set ¢ = 1/2 to match the Nyquist sampling rate [31].

The sum over s in can be interpreted as summing over concentric radial “shells.” To
investigate the effect of shell count, we limit the sum to a fixed number R:

Emax

14 R
(17> f(CT, 07 90) = Z Z Zxﬁ,m,s ygn(ea 90) jﬂ,s(r)a r S 1.

{=0 m=—¢ s=1

The bispectrum is then defined as

(18)
B(z)[lr, b2, L3, 51, 82, S3] = Z (=1)"™ (Lamg Lymiz | €1(—=11)) Tey my 51 T05,ms,50 s s, 535
m14|-m?|4<-?3:0

where the Clebsch—Gordan coefficients (£;m; famq | ¢m) are defined in .

6.2. Algorithm. While recovering f from its bispectrum is a non-convex problem, recover-
ing the coeflicients corresponding to the ¢-th frequency, given the coefficients of the 1, ..., /—1
coefficients, is a linear problem. Thus, we recover f by successively solving the linear system
of equations ; this is the frequency marching algorithm. The expansion coefficient for
¢ =0 is just the mean of the volume (first-degree invariant). The ¢ = 1 component of the
signal f, denoted A! € R3*% can be determined up to the action of O(3) from the Gram
matrix (A')TA!, which is a set of invariants of degree 2. Now let U € R3*f be a matrix
with UTU = (A')T A'. We have two distinct SO(3) orbits represented by U and its reflection
U'. Either U or U’ is in the same SO(3)-orbit of A'. In order to determine the correct
orbit we compare the determinants of the 3 x 3 minors of A' with both of U and U’. These
determinants can be written as I3(1,1,1)(f[r1], f![ra], f3[r3]) for 1 < 71,79,73 < R in our
notation and hence they are invariants of degree three.

After solving for the ¢ = 1 term up to translation by an element of SO(3), we fix a
representative for the orbit. Once the action of SO(3) has been fixed, we sequentially recover
the rest of the coefficients up to £ = (.. Specifically, for ¢ = 2, we use the coefficients for
¢ = 0,1, for £ = 3 the coefficients of / = 0,1,2 and so on. The reconstruction is of the
orbit of the vector of coefficients, i.e., the volume is estimated up to a rotation. Algorithm
provides a pseudocode of the algorithm. In our numerical experiments, for simplicity, we
assume that we know the coefficients corresponding to frequencies ¢ = 0 and ¢ = 1, thereby
removing the rotation ambiguity.
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Algorithm 1 Volume reconstruction from its bispectrum using frequency marching

1: Inputs: The bispectrum , and the spherical-Bessel coefficients corresponding to
(=0,1

2: Outputs: The spherical-Bessel coefficients x,, s , up to frequency /. and number
of shells R

3: for frequency ¢/ = 2 to ly. do
Compute {xg/,mvs}zig’;,;il by solving the linear system of equations (18] given coef-
ficients up to ¢'.
5. end for

6.3. Numerical experiments. We consider two volumes in our experiments: the TRPV1
structure [28], available from the Electron Microscopy Data Bank (EMDB) under accession
code EMD-81 17E|, and the Plasmodium falciparum 80S ribosome [39], available as EMD-2660.
Both volumes were downsampled to 31° voxels and expanded using varying values of £y
and R. The experiments were conducted on a MacBook Pro (2023) equipped with an Apple
M3 Pro chip (12-core CPU, 18-core GPU) and 36GB of unified memory, running macOS
15.5. The code used to reproduce all numerical experiments is publicly available at https:
//github.com/krshay/orbit-recovery-for-spherical-functions.

Recovery in the absence of noise. We begin by demonstrating successful volume
reconstructions from clean bispectrum data; see Figure [l These results use ¢, = 10 and
R = 8 for both volumes. The code was executed natively without virtualization, and took
approximately 17 seconds for the reconstruction. The molecular visualizations were produced
using UCSF Chimera [36]. We emphasize that the algorithm accurately recovers the volume
for R > 3, as expected from the theory, and we provide an example with additional shells
for visual clarity.

~ < y 4 (’\\)
v " A
d -

(A) The TRPV1 structure (B) Plasmoidum falciparum 80S ribosome

FIGURE 1. Volume reconstructions from clean bispectrum, with £,., = 10
and R = 8 for the TRPV1 structure and the Plasmodium falciparum 80S
ribosome. Left (gray): ground truth after expanding to the corresponding
maximal frequency /p,.x; right (yellow): reconstruction.

Thttps ://www.ebi.ac.uk/emdb/
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Condition number analysis. In practice, it is important that the recursive system of
linear equations has good condition numbers in order to ensure the stability of the solu-
tions. Fortunately, our numerical analysis indicates that these systems are generally well-
conditioned. Tables [1] and [2 report the condition number. Generally, the condition number
improves with the frequency and number of shells.

TABLE 1. Condition numbers for TRPV1

14 ‘ 3 shells 4 shells 5 shells

2 | 8749 1391 609.9
3| 2479 115.0  25.12
4 1 27.32 15.11 15.65
5 | 17.52 11.98 11.65
6 | 19.36 11.68 10.96
7| 21.64 16.44 13.85
8 | 15.38 10.92  9.707
9 | 14.52 11.29 10.56
10| 15.24 11.35 10.63

TABLE 2. Condition numbers for Plasmoidum falciparum 80S ribosome

14 ‘ 3 shells 4 shells 5 shells

3.037  3.209  3.384
7.301 3.213  3.138
3.309 2,593  2.614
3.835 2792 2.339
2.829  2.105 1.705
2.665  2.163 1.875
2.811 1.948 1.771
27774 2210 2.138
2217 2.004 1.995

© 00 O U = W N

—_
e}
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Robustness to Noise. In practical settings, the bispectrum is not available in its exact
form but rather estimated from noisy observations. To evaluate the algorithm’s robustness
to noise, we consider the following experimental setup. Let fi., denote the ground-truth
volume—in this case, the Plasmodium falciparum 80S ribosome. We simulate noisy mea-
surements according to the model V; = fi,. + €;, where each ¢; is a Gaussian noise vector
with zero mean and variance 02 = 0.5. A total of 500 noisy measurements V; are generated.
For each noisy measurement, we compute its bispectrum and average the results across all
500 instances. The coefficient vector is then estimated using Algorithm [T} The experiment
is performed with a bandlimit of /., = 10, and the number of radial shells R is varied
from 3 to 8. The resulting recovery errors are presented in Figure [2] The recovery error is
computed as
llz = 2]l

]|
where x denotes the ground-truth expansion coefficients, & the recovered coefficients, and
I - ||[r the Frobenius norm. Interestingly, while theoretical guarantees suggest that 3 shells
suffice for accurate reconstruction, the results indicate that using more than 3 shells yields
improved robustness in the presence of noise.

Y

(19) Relative Error =

0.03 T T T T

0.028

0.026

0.024

o
o
)
N

0.02

Relative Error

0.018

0.016

0.014

0.012 1 1 1 1
3 4 5 6 7 8

Number of Shells

F1GURE 2. Recovery error of the Plasmodium falciparum 80S ribosome as a
function of the number of shells, under additive Gaussian noise.
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