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1 Current Project:

As I embark on the journey to absorb more about the mathematical world, I continue to find new

channels and pathways that uncover the secrets of the world around us. This has become further

evident with some of my contemporary compositions. These compositions encompass solid and

liquid tumors elimination. In this work, via chaos control, a virtual laboratory is utilized to under-

stand the dynamical behavior and inner connectedness of solid and liquid tumors in the process of

eradication. From clinical data and research, mathematical models and algorithms are developed

and formulated to uncover the precise importance of these phenomena. With these virtual labora-

tories, we preserve all possible outcomes, and in many cases eradicate such problems all together.

In the exploration of clinical data, Chimeric Antigen Receptor T (CAR-T)–cell immunotherapy for

immunodeficient mice therapy of hematological cancers response depends on the following factors:

1. Capacity of CAR-T cells to kill tumor cells.

2. The formulation of long-term immunological memory.

3. Immunosuppressive effects of the tumor microenvironment.

After the approval of CAR T cell therapies in 2017 by the Federal Drug Administration,

immunotherapy attracted more recognition. This procedure can be initiated when an individ-

ual’s/patient’s T lymphocytes are genetically altered to identify tumor-specific antigens. This

process helps with minimizing tumor growth and possibly tumor remission. However, there is still

a challenge in CAR-T cell immunotherapy and all cellular therapies, which is the exhaustion of

implanted cells. To investigate this occurrence, we look to a mathematical model of CAR-T im-

munotherapy in pre-clinical studies of Hematological cancers. Luciana R. C. Barros et. at. [11] ,

constructed a mathematical model that explored the back-and-forth amongst tumor cells, effector

CAR-T cells, and memory CAR-T cells. In their work, the authors built a three-population mathe-

matical model to describe tumor response to CAR-T cell immunotherapy in immunodeficient mouse

models, encompassing interactions between a non-solid tumor and CAR-T cells. Their model is

composed of ordinary differential equations (ODEs). We present their model,
dCT
dt = ϕCT − ρCT + θTCM − αTCT

dCM
dt = ϵCT − θTCM − µCM
dT
dt = rT (1− bT )− γCTT.

(1)

In the above model, T,CT , and CM , represent tumor cells, effector CAR-T cells, and memory

CAR-T cells, respectively.

With the following equations, CT = r
γX,CM = r

γY, T = 1
bZ, and t = 1

r τ , the following dimen-

sionless system is obtained from system (1),
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
X ′ = −pX + qZY − sZX

Y ′ = uX–qZY − wY

Z ′ = Z(1− Z)−XZ.

(2)

To extremely investigate the correlations of this model, the total effect of effector CART-cell

must be observed. For this purpose, we specifically explore the dynamics of the effector (activated)

CART- cells for system (1),

dCT

dt
= ϕCT − ρCT + θTCM − αTCT .

With this richer assessment, using biological nuances, the stimulatory/inhibitory signals on effector

CART-cells transformed by the tumor are where we start our investigation. In system (??), we will

study the stability of the non-trivial equilibrium points. We will also study Hopf Bifurcation of the

system, which results in a periodic solution. We will give the stability of the periodic solution by

calculating the first Lyapunov coefficient. Finally, we will give a numerical example to illustrate

our results.

For example, we will investigate the dynamic behavior of Hopf bifurcation stability.

We study this behavior because oscillatory contours are frequently observed through-

out nature. Many have argued and shown the importance and strength that this line

of research. To tackle the shortcomings, We are interested in the special case when

s converges to zero (s → 0). In the absence of s, the CART-cells have now become

ineffective in their ability to arouse or repress the tumor cells..

We now propose the new dimensionless system of ordinary differential equations for CAR-T cell

therapy with numerical simulations to demonstrate the steadiness of the anew purported structure,
X ′ = −pX + qZY

Y ′ = uX–qZY − wY

Z ′ = Z(1− Z)−XZ.

(3)

Figure 1: Limit Cycle: Numerical Result for Stability
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Figure 2: 3D Limit Cycle: Numerical Result for Stability

2 Published Article(s):

We have developed several denoising methods and their associated algorithms based on TV and

NLM for speckle noisy images. Speckle noise is mostly present in ultrasound images, synthetic

aperture radar (SAR) images, or acoustic images. It is granular in nature, and it exists inherently

in the images. Unlike Gaussian noise, which affects single pixels of an image, speckle noise affects

multiple pixels. The noise is multiplicative, whereas Gaussian noise is additive. Hence, it is not

possible to remove speckle noise with the traditional gaussian denoising models.

1. Edge Enhancing Accelerated Diffusion (EEAD) Model

Krissian et al. [6] suggested the following speckle noise equation:

f = u+
√
un, (4)

where u is the desired image to fine, n is Gaussian noise, and f is the observed image. Hence using

n = f−u√
u
, the general regularized minimization functional is given as :

inf
u
F (u), F =

∫
Ω

[
|∇u|+ λ

2

(
f − u√

u

)2
]
dx. (5)

The time marching non-linear PDE which is asscoiated with the corresponding Euler Lagrange

equation is
∂u

∂t
− u2

f + u
|∇u|∇ ·

(
∇u

|∇u|

)
= λ|∇u|(f − u). (6)

This method can accelerate the diffusion process and therefore remove noise quickly. However, the

uniform diffusion over the region does not incorporate the specific regions of interest - noisy regions.

This may lead to an oversmoothing effect. In 2019, we have developed the following noise equation
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[9] for speckle denoising:

f = u+
√
u+ C|u− fs|α · n. (7)

Here, fs denotes the smoothed version of the given observed image f . By adopting the non-convexity

of the minimizing functional in [5] for edge enhancement and by using the strategy developed by

Marquina and Osher [8] to prevent the staircasing effect, the following Edge Enhancing Accelerated

Diffusion (EEAD) model has been proposed:

∂u

∂t
= (u+ C|u− fs|α)|∇u|2−p∇ ·

(
∇u

|∇u|2−p

)
+ λ|∇u|2−p(f − u), 0 < p < 1. (8)

An explicit numerical scheme for our EEAD model following the linearized time stepping procedure

[2] has been developed and the stability of the scheme under a certain condition on ∆t has been

proved in [9]. The EEAD algorithm was tested to several images with synthetic or natural speckle

noise and the results were compared to the ones using the Krissian et al. model. All of the images

showed that EEAD produces more accurate results than the Krissian et al. model.

Krissian et al. EEAD

Time (s) PSNR Time (s) PSNR

Block (PSNR=28.03) 2.85 30.05 3.68 32.57

Lenna (PSNR=25.70) 2.88 28.23 3.63 30.01

Gallstone 4.06 – 5.19 –

Liver 2.83 – 3.64 –

(a) (b) (c)

Figure 3: Liver: (a) Original, (b) Krissian et al., (c) EEAD

2. Quarter Match Non-Local Means Algorithms for Noise Removal

The standard non-local means (NLM) method [1] is very accurate in removing noise compared to

other conventional denoising methods. However, the main drawback is on computational inefficiency

due to its non-locality. To overcome the drawback, the authors of [4] suggested the use of blocks

Bik of size (2α + 1)2 with overlapping supports and performed NLM restoration on these blocks
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instead of pixels. The following is the proposed formula to restore images:

NL[u](Bik) =
∑

Bj∈Vik

w(Bik , Bj)u(Bj) (9)

with

w(Bik , Bj) =
1

Zik

e−
||u(Bik

)−u(Bj)||
2
2

ĥ2 , (10)

where Zik is a normalization constant ensureing that
∑

Bj∈Vik
w(Bik , Bj) = 1 and ĥ is a smoothing

parameter. Since blocks are simultaneously updated, this blockwise NLM method significantly

reduced the computation time for the NLM method. Inspired by Mahmoudi and Sapiro [7] who

proposed a method to preselect the most similar neighborhoods only to avoid unneccessary weight

computation, we have developed several NLM blockwise selective algorithms for speckle noise im-

ages.

Average gradient The weight w(Bik , Bj) was only considered when the ratios of average

gradients of u(Bik) and u(Bj) are within a sufficiently small range around 1. Here the average

gradient is denoted by

∇v(i) = (vx(i), vy(i)), (11)

where v(i) and v(j) represents the gray values in the neighborhood of pixels i and j.

Angles between neighborhoods The weight was selected only when the angles between the

two neighborhoods were sufficiently small. To measure the angle between two neighborhoods v(i)

and v(j), the following equation was used:

cos(θ) =
∇v(i) · ∇v(j)

||∇v(i)|| ||∇v(j)||
. (12)

This method was developed to prevent the possibility of neighborhoos having the similar mean

and angles but not similar at all. Examples of this:

We minimized this issue by dividing each of our blocks into four parts to compare the average of

each of those quarters with other neighborhoods.

(a) (b) (c)

All of selective blockwise NLM methods were numerically tested and compared to the original

and blockwise NLM. The new methods are still accurate enough and more efficient than the original

and blockwise NLM filter.
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Figure 4: Lenna: (a) Original, (b) Speckle Noisy, (c) Quarter selective h = 125

3 Algorithm Devloped: Article Formulation- Research Continua-

tion

Chambolle Accelerated Diffusion (CAD) Model

BACKGROUND

Gray scale images can be expressed as a two variable function defined on a rectangular domain.

We denote an original noise free image by u and an observed noisy image by f . Hence u, f : Ω ⊂
R2 → R. In general, an observed image f is represented by the equation:

f = u+ n, (13)

where n is the Gaussian noise. For a denoising model, the main objective is to reconstruct u from

an observed image f . In 1992, Rubin, Osher, and Fatemi [10] proposed the total variation (TV)

denoising model as the minimization problem:

inf
u
F (u), F =

∫
Ω
|∇u|dx+

λ

2

∫
Ω
(f − u)2dx. (14)

Applying an evolution parameter t to the corresponding Euler Lagrange equation gives the TV

Gaussian denoising model as:
∂u

∂t
−∇ ·

(
∇u

|∇u|

)
= λ(f − u). (15)

The TV model is computationally efficient on denoising images corrupted by Gaussian noise but

it produces staircasing effect [5]. In [5], Kim and Lim introduced a nonconvex diffusion model to

prevent the staircasing effect and to enhance edges:

∂u

∂t
− |∇u|2−p∇ ·

(
∇u

|∇u|2−p

)
= λ|∇u|2−p(f − u), p ∈ (0, 1). (16)

Besides the PDE based models, some filtering based techniques were also proved to be very precise

in removing noise and preserving texture of images. Among them the most remarkable results were
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observed for the non-local means (NLM) method [1]. The method is given by the formula

NL(u)(x) =
1

C(x)

∫
e−

(Ga∗|u(x+.)−u(y+.)|
2)(0)

h2 u(y)dy, (17)

where Ga is a Gaussian Kernel with standard deviation a, C(x) =
∫
e−

(Ga∗|u(x+.)−u(z+.)|
2)(0)

h2 dz is the

normalizing factor, and h acts as a filtering parameter. The NLM method estimates the value of x

as a weighted average of the values of all the pixels in the entire image. Due to non-locality and the

weighted averaging technique with the similar neighborhoods, the NLM method is very accurate

in removing noise. However, the main drawback is on computational complexity.

In [3], Chambolle proposed a fast projection algorithm for minimizing the TV functional in [10].

He obtained the equivalent dual problem as

min
|pi,j |≤1

1

2
∥divp− f

λ
∥2, (18)

where divp = w for p = (pi,j); i, j = 1, . . . , N ∈ Y = XxX and w = f−u
λ . The following algorithm

was proposed to update p:

pn+1
i,j =

pni,j + τ(∇(divpn − f
λ))i,j

1 + τ(|(∇(divpn − f
λ))i,j |

. (19)

Due to its simpler dual formation, the method is more efficient than the original TV model. How-

ever, it is not suitable for speckle denoising. Using the modified version of EEAD noise equation

(7), we propose the following form of a noise equation:

f = u+ (
√

f + C|f − fs|α)n (20)

which gives

min
u

F (u), F (u) = λJ(u) +
1

2

∫
Ω

(u− f)2

β
dx, (21)

where

J(u) =

∫
Ω
|∇u|dx, β = f + C|f − fs|α. (22)

One can show that the Euler Lagrange equation for the minimizing functional (21) is

∂J(u) +
u− f

λβ
∋ 0. (23)

4 Path Forward:

Furture Plans

We are currently working on combining Chamoblle model with efficiency and Non-local means

model with accuracy. Our new research requires new definitions as classical derivates are local

operators.
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Minimization functional:

inf
u
F (u) =

∫
Ω
|∇NLu|+

λ

2
(u− u0)

2dx (24)

Minimizing, Euler Lagrange gives the model as:

ut =

∫
Ω
w(x, y)(u(y)− u(x))

(
|∇NLu|−1(x) + |∇NLu|−1(y)

)
− λ(u(y)− u(x))dy (25)

Ω ⊂ Rn, x ∈ Ω, u : Ω → R, w(x, y) = weights between points x and y. Consider w(x, y) = w(y, x).

� NL vectors: Mappings p : Ω x Ω → R.

� NL gradient: ∇NLu(x, y) = (u(y)− u(x))
√
w(x, y)

� NL norm: |p|(x) =
√∫

Ω p(x, y)2dy

� NL divergence: divNLlp(x) =
∫
Ω(p(x, y)− p(y, x))

√
w(x, y)dy

5 Collaborative Research:

Modeling and quantifying the effect of blood pressure, intraocular pressure, and blood viscosity

on the central retinal artery hemodynamics in people of European and African descent [12, 13]

Figure 5: Jones, Chartese; Guidoboni Giovanna; Antman, Gal; Siesky, Brent. A.; Verticchio, Alice;
Harris, Alon
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