Analysis Qualifying Exam - May 2025

Instructions: Do all 8 problems. Use a separate sheet for each problem. Your work will be graded for correctness, completeness, and clarity.

- 1. Let X be a non-empty set.
 - a. Define the notions of a semi-ring S of subsets of X, and a pre-measure μ on S.
 - b. State Carathéodory's Theorem.
 - c. Outline the main steps in the proof of Caratheodory's theorem; be sure to define **outer** measure μ^* and μ^* -measurability.
- 2. Let $\{f_k\}$ be a sequence of nonnegative measurable functions on [0,1] such that $f_k \to f$ a.e. Prove that

$$\lim_{k \to \infty} \int_0^1 f_k(x) e^{-f_k(x)} dx = \int_0^1 f(x) e^{-f(x)} dx.$$

- 3. Let (X, \mathcal{A}, μ) be a measure space and let $1 \leq p < q < \infty$.
 - a. Prove that if $\mu(X) < \infty$, then $L^q(\mu) \subseteq L^p(\mu)$.
 - b. Assume that $\sup\{\mu(A): A \in \mathcal{A}, \mu(A) < \infty\} = \infty$.
 - i. Show that there exist pairwise disjoint sets $A_i \in \mathcal{A}$ of finite measure such that $\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \infty$.
 - ii. Prove that there exists a function f in $L^q(\mu) \setminus L^p(\mu)$.
- 4. Let (X, \mathcal{A}, μ) be a σ -finite measure space. Assume that $f, g: X \to \mathbb{R}$ are measurable functions. For $t \in \mathbb{R}$, let

$$F_t = \{x \in X : f(x) > t\}$$
 and $G_t = \{x \in X : g(x) > t\}.$

a. Prove that

$$\int_X |f(x) - g(x)| d\mu(x) = \int_{\mathbb{R}} \mu((F_t \backslash G_t) \cup (G_t \backslash F_t)) dt.$$

- b. Assume that f and g are also integrable. Explain why the identity in part (a) remains valid even when (X, \mathcal{A}, μ) is not assumed to be σ -finite.
- 5. Let $f:[0,1] \to [0,1]$ be absolutely continuous and let $g:[0,1] \to [0,1]$ be given by $g(x) = \sqrt{x}$.
 - a. Prove that $f \circ g$ is absolutely continuous.
 - b. Give an example to show that $g \circ f$ need not be absolutely continuous.
- 6. Define $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = \frac{1}{1+x^2}$.
 - a. Show that the Fourier transform of f is given by $\hat{f}(\xi) = \frac{1}{2}e^{-|\xi|}$.
 - b. Prove that the function $H: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$H(x,y) = \frac{e^{-|x-y|}}{1 + (x+y)^2}$$

is the Fourier transform of a function $G \in L^1(\mathbb{R}^2)$ (hint: use a change of variables).

- 7. Let E and F be Banach spaces and let $T: E \to F$ be a bounded linear operator satisfying ||Tx|| > ||x|| for all $x \in E \setminus \{0\}$. Prove that the adjoint T^* of T is an open mapping.
- 8. Let H be a separable Hilbert space over \mathbb{R} with orthonormal basis $\{e_n\}_{n\in\mathbb{N}}$. A sequence $\{x_n\}_{n\in\mathbb{N}}$ in H is said to be weakly Cauchy if for each $y\in H$, $\{\langle x_n,y\rangle\}_{n\in\mathbb{N}}$ is a Cauchy sequence.
 - a. Prove that if $\{x_n\}$ is weakly Cauchy, then it is bounded.
 - b. Show that if $\{x_n\}$ is weakly Cauchy, then there exists $x \in H$ such that $\langle x_n, y \rangle \to \langle x, y \rangle$ for each $y \in H$.
 - c. Show that if $\sup_{n\in\mathbb{N}}||x_n||<\infty$ and $\{\langle x_n,e_m\rangle\}_n$ converges for each m, then $\{x_n\}$ is weakly Cauchy.