Qualifying Examination in Analysis
 May 2024

- If you have any difficulty with the wording of the following problems please contact the supervisor immediately.
- You are allowed to rely on a previous part of a multi-part problem even if you do not work out the previous part.
- Solve all problems.

1. (a) Given σ-algebras $\mathcal{M}_{1}, \mathcal{M}_{2}$ on a set X, define the product σ-algebra $\mathcal{M}_{1} \otimes \mathcal{M}_{2}$.
(b) If $\mathcal{P}(X)$ denotes the power set of a set X, prove that $\mathcal{P}(\mathbb{N}) \otimes \mathcal{P}(\mathbb{N})=\mathcal{P}\left(\mathbb{N}^{2}\right)$, and if μ_{c} is the counting measure on \mathbb{N} then $\mu_{c} \times \mu_{c}$ is the counting measure on \mathbb{N}^{2}.
(c) Prove that if $\mathcal{B}_{\mathbb{R}}$ is the Borel σ-algebra on \mathbb{R} then $\mathcal{B}_{\mathbb{R}} \otimes \mathcal{P}(\mathbb{N})$ is the smallest σ-algebra on $\mathbb{R} \times \mathbb{N}$ containing sets of type $[a, b] \times\{n\}, a, b \in \mathbb{R}, a<b, n \in \mathbb{N}$, and

$$
\mathcal{B}_{\mathbb{R}} \otimes \mathcal{P}(\mathbb{N})=\left\{\text { countable unions of sets of type } E \times\{n\}, E \in \mathcal{B}_{\mathbb{R}}, n \in \mathbb{N}\right\}
$$

[Hint: show first that the set on the right-hand side is a σ-algebra.]
2. Let (X, \mathcal{M}, μ) be a measure space.
(a) Explain what it means for μ to be continuous from below/above, and under which conditions they are true.
(b) Recall that given a sequence $\left\{A_{n}\right\}_{1}^{\infty} \subseteq \mathcal{M}$ we have

$$
\varlimsup_{n} A_{n}=\bigcap_{k=1}^{\infty} \bigcup_{n \geq k} A_{n}=\left\{x \in X: x \in A_{n} \text { for infinitely many } n\right\}
$$

Prove that if $\mu(X)<\infty$ then $\varlimsup_{n} \mu\left(A_{n}\right) \leq \mu\left(\varlimsup_{n} A_{n}\right)$.
(c) Suppose that $\mu(X)<\infty$, and let $\left\{f_{n}\right\}$ be a sequence of measurable functions such that for some $a>0$

$$
\mu\left(\left\{x:\left|f_{n}(x)\right| \geq 1\right)>a>0, \quad \forall n \in \mathbb{N}\right.
$$

prove that it's not possible that $f_{n} \rightarrow 0$ a.e.
3. Let (X, \mathcal{M}, μ) be a measure space.
(a) State the Lebesgue Dominated Convergence Theorem.
(b) Consider the sequences of functions

$$
f_{n}(x)=\frac{\sin \left(n^{2} x^{2}\right)}{n^{2} x^{3 / 2}} \chi_{(0, n]}(x), \quad g_{n}(x)=\left(\sin \frac{x}{n}\right) \chi_{(0, n \pi / 2]}(x) .
$$

Establish if the following limits exist, in which case evaluate them:

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} f_{n}(x) d x, \quad \lim _{n \rightarrow \infty} \int_{0}^{\infty} g_{n}(x) d x
$$

4. (a) Define what it means for T to be a bounded linear operator between normed vector spaces. For such an operator define $\|T\|$.
(b) Consider the operator T defined on the space of sequences $x=\left\{x_{n}\right\}_{1}^{\infty}$ as follows: $T x=\left\{x_{n}+\lambda_{n} x_{1}\right\}_{1}^{\infty}$, where $\left\{\lambda_{n}\right\}_{1}^{\infty}$ is a complex-valued sequence such that $\left|\lambda_{n}\right| \leq 2^{-n}$ for all $n \in \mathbb{N}$. Prove that T is bounded from $\ell^{1}(\mathbb{N})$ to itself, and $\|T\| \leq 2$.
(c) Prove that if $\left\{\lambda_{n}\right\}_{1}^{\infty}=\left\{(-1)^{n} 2^{-n}\right\}_{1}^{\infty}$ then $\|T\|=1$.
5. (a) Let $(X,\|\cdot\|)$ be a normed vector space. Explain in what sense X can be identified with a subspace of $X^{* *}$, and what it means for X to be reflexive. Make sure notation and terms are reasonably well described.
(b) Let X be a reflexive normed vector space and denote the norm of $f \in X^{*}$ as $\|f\|$. Consider $f, g \in X^{*}$ and $\lambda, \mu \in \mathbb{R}$. Show that the following are equivalent:
i. There exists $x_{0} \in X$ with $\left\|x_{0}\right\| \leq 1$ and $f\left(x_{0}\right)=\lambda, g\left(x_{0}\right)=\mu$.
ii. For all $\alpha, \beta \in \mathbb{R}$ we have $|\alpha \lambda+\beta \mu| \leq\|\alpha f+\beta g\|$.
[Hint: For ii. \Longrightarrow i. consider the map $\Phi_{0}: \operatorname{span}\{f, g\} \rightarrow \mathbb{R}$ defined as $\Phi_{0}(\alpha f+\beta g)=$ $\alpha \lambda+\beta \mu$.]
6. Let (X, \mathcal{M}, μ) be a measure space.
(a) Suppose that $\left\{f_{n}\right\}$ is a sequence of measurable functions on (X, \mathcal{M}, μ) such that $f_{n} \rightarrow f$ a.e., for some measurable f. Prove that for $0<p \leq \infty$ we have $\|f\|_{p} \leq \underline{\lim }_{n}\left\|f_{n}\right\|_{p}$.
(b) Find a sequence $\left\{f_{n}\right\}$ of Borel measurable functions on \mathbb{R} such that

$$
\|f\|_{p}<\varliminf_{n}\left\|f_{n}\right\|_{p}<\varlimsup_{n}\left\|f_{n}\right\|_{p},
$$

for any $p \in(0, \infty]$.

