Qualifying Examination in Analysis May 2024

- If you have any difficulty with the wording of the following problems please contact the supervisor immediately.
- You are allowed to rely on a previous part of a multi-part problem even if you do not work out the previous part.
- Solve all problems.
- 1. (a) Given σ -algebras $\mathcal{M}_1, \mathcal{M}_2$ on a set X, define the product σ -algebra $\mathcal{M}_1 \otimes \mathcal{M}_2$.
 - (b) If $\mathcal{P}(X)$ denotes the power set of a set X, prove that $\mathcal{P}(\mathbb{N}) \otimes \mathcal{P}(\mathbb{N}) = \mathcal{P}(\mathbb{N}^2)$, and if μ_c is the counting measure on \mathbb{N} then $\mu_c \times \mu_c$ is the counting measure on \mathbb{N}^2 .
 - (c) Prove that if $\mathcal{B}_{\mathbb{R}}$ is the Borel σ -algebra on \mathbb{R} then $\mathcal{B}_{\mathbb{R}} \otimes \mathcal{P}(\mathbb{N})$ is the smallest σ -algebra on $\mathbb{R} \times \mathbb{N}$ containing sets of type $[a, b] \times \{n\}$, $a, b \in \mathbb{R}$, $a < b, n \in \mathbb{N}$, and

 $\mathcal{B}_{\mathbb{R}} \otimes \mathcal{P}(\mathbb{N}) = \{ \text{countable unions of sets of type } E \times \{n\}, E \in \mathcal{B}_{\mathbb{R}}, n \in \mathbb{N} \}$

[Hint: show first that the set on the right-hand side is a σ -algebra.]

- 2. Let (X, \mathcal{M}, μ) be a measure space.
 - (a) Explain what it means for μ to be continuous from below/above, and under which conditions they are true.
 - (b) Recall that given a sequence $\{A_n\}_1^\infty \subseteq \mathcal{M}$ we have

$$\overline{\lim_{n}} A_{n} = \bigcap_{k=1}^{\infty} \bigcup_{n \ge k} A_{n} = \{ x \in X : x \in A_{n} \text{ for infinitely many } n \}$$

Prove that if $\mu(X) < \infty$ then $\overline{\lim}_n \mu(A_n) \le \mu(\overline{\lim}_n A_n)$.

(c) Suppose that $\mu(X) < \infty$, and let $\{f_n\}$ be a sequence of measurable functions such that for some a > 0

$$\mu(\{x: |f_n(x)| \ge 1) > a > 0, \qquad \forall n \in \mathbb{N}$$

prove that it's not possible that $f_n \to 0$ a.e.

- 3. Let (X, \mathcal{M}, μ) be a measure space.
 - (a) State the Lebesgue Dominated Convergence Theorem.
 - (b) Consider the sequences of functions

$$f_n(x) = \frac{\sin(n^2 x^2)}{n^2 x^{3/2}} \chi_{(0,n]}(x), \qquad g_n(x) = \left(\sin\frac{x}{n}\right) \chi_{(0,n\pi/2]}(x).$$

Establish if the following limits exist, in which case evaluate them:

$$\lim_{n \to \infty} \int_0^\infty f_n(x) \, dx, \qquad \lim_{n \to \infty} \int_0^\infty g_n(x) \, dx$$

- 4. (a) Define what it means for T to be a bounded linear operator between normed vector spaces. For such an operator define ||T||.
 - (b) Consider the operator T defined on the space of sequences $x = \{x_n\}_1^\infty$ as follows: $Tx = \{x_n + \lambda_n x_1\}_1^\infty$, where $\{\lambda_n\}_1^\infty$ is a complex-valued sequence such that $|\lambda_n| \leq 2^{-n}$ for all $n \in \mathbb{N}$. Prove that T is bounded from $\ell^1(\mathbb{N})$ to itself, and $||T|| \leq 2$.
 - (c) Prove that if $\{\lambda_n\}_1^{\infty} = \{(-1)^n 2^{-n}\}_1^{\infty}$ then ||T|| = 1.
- 5. (a) Let $(X, \|\cdot\|)$ be a normed vector space. Explain in what sense X can be identified with a subspace of X^{**} , and what it means for X to be reflexive. Make sure notation and terms are reasonably well described.
 - (b) Let X be a reflexive normed vector space and denote the norm of f ∈ X* as ||f||. Consider f, g ∈ X* and λ, μ ∈ ℝ. Show that the following are equivalent:
 i. There exists x₀ ∈ X with ||x₀|| ≤ 1 and f(x₀) = λ, g(x₀) = μ.

ii. For all $\alpha, \beta \in \mathbb{R}$ we have $|\alpha \lambda + \beta \mu| \le ||\alpha f + \beta g||$.

[Hint: For ii. \Longrightarrow i. consider the map Φ_0 : span $\{f, g\} \to \mathbb{R}$ defined as $\Phi_0(\alpha f + \beta g) = \alpha \lambda + \beta \mu$.]

- 6. Let (X, \mathcal{M}, μ) be a measure space.
 - (a) Suppose that $\{f_n\}$ is a sequence of measurable functions on (X, \mathcal{M}, μ) such that $f_n \to f$ a.e., for some measurable f. Prove that for $0 we have <math>\|f\|_p \leq \underline{\lim}_n \|f_n\|_p$.
 - (b) Find a sequence $\{f_n\}$ of Borel measurable functions on \mathbb{R} such that

$$||f||_p < \underline{\lim}_n ||f_n||_p < \overline{\lim}_n ||f_n||_p,$$

for any $p \in (0, \infty]$.