QUALIFYING EXAMINATION
 MAY 2024

- Let S_{n} and A_{n} stand, respectively, for the permutation group and the alternating group on n letters.
- The symbol $H \lesseqgtr G$ means that H is a subgroup of G, but H is not equal to G.
- Notation: $\mathbb{N}:=\{0,1,2, \ldots\}, \mathbb{N}^{+}:=\{1,2, \ldots\}, \mathbb{Z}:=\{\ldots,-2,-1,0,1,2, \ldots\}$, $\mathbb{R}:=$ the field of all real numbers.
- Every ring, in this exam, is assumed to have a multiplicative identity which is not equal to the additive identity.

ALGEBRA QUALIFYING EXAM

(I) Groups

(1) Prove that a group with 36 elements is not a simple group.
(2) Determine if the statement: "If $n \geq 3$, then A_{n} is generated by the three-cycles in S_{n} " is true or false. In either case, justify your answer.
(3) Let $H \lesseqgtr G$ where G is a finite group. Prove that there is an element $g \in G$ such that for each $x \in G, g \notin x H x^{-1}$.

(II) Rings

(4) Let \mathcal{F} be a family of ideals in the ring R such that
(i) $R \in \mathcal{F}$ and,
(ii) for an element a of R and every ideal I of R, if $(I, a) \in \mathcal{F}$ and $I: a=\{r \in R: r a \in I\} \in \mathcal{F}$, then $I \in \mathcal{F}$ also.
Let \mathcal{G} be the complement of \mathcal{F} in the collection of all ideals of R. Let J be an ideal in \mathcal{G} which is maximal under the partial order on \mathcal{G} given by inclusion. Prove that J is a prime ideal. (Note that J need not be a maximal ideal of R.)
(5) Let $p \in \mathbb{Z}$ be a prime and $f(X):=a_{0}+a_{1} X+a_{2} X^{2}+\ldots+a_{n-1} X^{n-1}+$ $X^{n} \in \mathbb{Z}[X]$ be monic such that $\overline{f(X)}:=\overline{a_{0}}+\overline{a_{1}} X+\overline{a_{2}} X^{2}+\ldots+$ $\overline{a_{n-1}} X^{n-1}+X^{n}$ is irreducible in $\mathbb{Z}_{p}[X]$ with $\overline{a_{i}}:=a_{i}+p \mathbb{Z}$. Prove that $f(X)$ is irreducible in $\mathbb{Z}[X]$.
(6) Let $R:=\mathbb{Z} / n \mathbb{Z}$ for $n \in \mathbb{N}^{+}$. Prove that R is semi-simple (as an R module) if and only if n is square-free (i.e., p^{2} does not divide n for every prime p).

(III) Fields

(7) Let F be a field and let $f(X) \in F[x]$ be an irreducible, separable polynomial of degree 3 with splitting field E. If a, b, and c are the roots of $f(X)$ in E and $b \notin F(a)$, compute the Galois group $\operatorname{Gal}(E / F)$ of E over F.
(8) Let F be a field and let $f(X) \in F[x]$ with g.c.d. $\left(f(X), f^{\prime}(X)\right)=1$. Let E be the splitting field of $f(X)$. Prove that if all of the roots of $f(X)$ are conjugate under the Galois group $\operatorname{Gal}(E / F)$, then $f(X)$ is irrreducible in $F[x]$. (Recall: Roots of $f(X)$ are conjugate under $\operatorname{Gal}(E / F)$ means: if $u, v \in E$ are roots of $f(X)$, then there exists a $\sigma \in \operatorname{Gal}(E / F)$ such that $\sigma(u)=v$.)

(IV) Modules and Linear Algebra

(9) Let k be a field and $g_{1}(X), g_{2}(X) \in k[X]$ with g.c.d. $\left(g_{1}(X), g_{2}(X)\right)=1$. Let V be a finite-dimensional vector space over k and $T: V \rightarrow V$ be a linear operator with minimal polynomial $p_{T}(X)=g_{1}(X) g_{2}(X)$. For $i=1,2$, let $W_{i}:=\operatorname{Ker}\left(g_{i}(T)\right)$ be T-invariant subspaces of V such that $V=W_{1} \oplus W_{2}$.

For $i=1,2$, prove that $g_{i}(X)$ is the minimal polynomial for the restriction operator $\left.T\right|_{W_{i}}$ of T to the subspace W_{i}.
(10) Let R be a commutative ring. If the sequence $L \xrightarrow{f} M \xrightarrow{g} N \rightarrow 0$ of R-module homomorphisms is exact, prove that the sequence $L \otimes_{R}$ $C \xrightarrow{f \otimes i d_{C}} M \otimes_{R} C \xrightarrow{g \otimes i d_{C}} N \otimes_{R} C \rightarrow 0$ of R-module homomorphisms is exact for every R-module C (i.e., prove that tensoring with C is right-exact).
(Hint: You may use the following two facts without proving them:
(i) The sequence $L \xrightarrow{f} M \xrightarrow{g} N \rightarrow 0$ of R-module homomorphisms is exact if and only if the sequence $0 \rightarrow \operatorname{Hom}_{R}(N, K) \rightarrow \operatorname{Hom}_{R}(M, K) \rightarrow$ $\operatorname{Hom}_{R}(L, K)$ of R-module homomorphisms is exact for every R module K.
(ii) "Adjoint Isomorphism" theorem: For R-modules U, V, W, there is an R-module isomorphism $\operatorname{Hom}_{R}\left(U \otimes_{R} V, W\right) \cong \operatorname{Hom}_{R}\left(U, \operatorname{Hom}_{R}(V, W)\right)$.)
(11) Let A be a 6 by 6 matrix with entries in \mathbb{R} and characteristic polynomial $f_{A}(X):=\left(X^{2}+1\right)^{2}(X-1)(X+2)$.
(i) Write down all the possible minimal polynomials $p_{A}(X)$ for A.
(ii) Write down all (up to isomorphism) rational canonical forms of A over \mathbb{R}.

