QUALIFYING EXAMINATION MAY 2024

- Let S_n and A_n stand, respectively, for the permutation group and the alternating group on n letters.
- The symbol $H \lneq G$ means that H is a subgroup of G, but H is not equal to G.
- Notation: $\mathbb{N} := \{0, 1, 2, ...\}, \mathbb{N}^+ := \{1, 2, ...\}, \mathbb{Z} := \{..., -2, -1, 0, 1, 2, ...\}, \mathbb{R} :=$ the field of all real numbers.
- Every ring, in this exam, is assumed to have a multiplicative identity which is not equal to the additive identity.

ALGEBRA QUALIFYING EXAM

(I) Groups

- (1) Prove that a group with 36 elements is not a simple group.
- (2) Determine if the statement: "If $n \ge 3$, then A_n is generated by the three-cycles in S_n " is true or false. In either case, justify your answer.
- (3) Let $H \leq G$ where G is a finite group. Prove that there is an element $g \in G$ such that for each $x \in G$, $g \notin xHx^{-1}$.

(II) **Rings**

- (4) Let \mathcal{F} be a family of ideals in the ring R such that
 - (i) $R \in \mathcal{F}$ and,
 - (ii) for an element a of R and every ideal I of R, if $(I, a) \in \mathcal{F}$ and $I : a = \{r \in R : ra \in I\} \in \mathcal{F}$, then $I \in \mathcal{F}$ also.

Let \mathcal{G} be the complement of \mathcal{F} in the collection of all ideals of R. Let J be an ideal in \mathcal{G} which is maximal under the partial order on \mathcal{G} given by inclusion. Prove that J is a prime ideal. (Note that J need not be a maximal ideal of R.)

- (5) Let $p \in \mathbb{Z}$ be a prime and $f(X) := a_0 + a_1 X + a_2 X^2 + \ldots + a_{n-1} X^{n-1} + X^n \in \mathbb{Z}[X]$ be monic such that $\overline{f(X)} := \overline{a_0} + \overline{a_1} X + \overline{a_2} X^2 + \ldots + \overline{a_{n-1}} X^{n-1} + X^n$ is irreducible in $\mathbb{Z}_p[X]$ with $\overline{a_i} := a_i + p\mathbb{Z}$. Prove that f(X) is irreducible in $\mathbb{Z}[X]$.
- (6) Let $R := \mathbb{Z}/n\mathbb{Z}$ for $n \in \mathbb{N}^+$. Prove that R is semi-simple (as an R-module) if and only if n is square-free (i.e., p^2 does not divide n for every prime p).
- (III) Fields
 - (7) Let F be a field and let $f(X) \in F[x]$ be an irreducible, separable polynomial of degree 3 with splitting field E. If a, b, and c are the roots of f(X) in E and $b \notin F(a)$, compute the Galois group Gal(E/F) of E over F.
 - (8) Let F be a field and let $f(X) \in F[x]$ with g.c.d.(f(X), f'(X)) = 1. Let E be the splitting field of f(X). Prove that if all of the roots of f(X) are conjugate under the Galois group Gal(E/F), then f(X)is irreducible in F[x]. (Recall: Roots of f(X) are conjugate under Gal(E/F) means: if $u, v \in E$ are roots of f(X), then there exists a $\sigma \in Gal(E/F)$ such that $\sigma(u) = v$.)

(IV) Modules and Linear Algebra

(9) Let k be a field and $g_1(X), g_2(X) \in k[X]$ with $g.c.d.(g_1(X), g_2(X)) = 1$. Let V be a finite-dimensional vector space over k and $T: V \to V$ be a linear operator with minimal polynomial $p_T(X) = g_1(X)g_2(X)$. For i = 1, 2, let $W_i := Ker(g_i(T))$ be T-invariant subspaces of V such that $V = W_1 \oplus W_2$.

For i = 1, 2, prove that $g_i(X)$ is the minimal polynomial for the restriction operator $T|_{W_i}$ of T to the subspace W_i .

(10) Let R be a commutative ring. If the sequence $L \xrightarrow{f} M \xrightarrow{g} N \to 0$ of R-module homomorphisms is exact, prove that the sequence $L \otimes_R$ $C \xrightarrow{f \otimes id_C} M \otimes_R C \xrightarrow{g \otimes id_C} N \otimes_R C \to 0$ of R-module homomorphisms is exact for every R-module C (i.e., prove that tensoring with C is right-exact).

(Hint: You may use the following two facts without proving them:

- (i) The sequence $L \xrightarrow{f} M \xrightarrow{g} N \to 0$ of *R*-module homomorphisms is exact if and only if the sequence $0 \to Hom_R(N, K) \to Hom_R(M, K) \to Hom_R(L, K)$ of *R*-module homomorphisms is exact for every *R*-module *K*.
- (ii) "Adjoint Isomorphism" theorem: For *R*-modules U, V, W, there is an *R*-module isomorphism $Hom_R(U \otimes_R V, W) \cong Hom_R(U, Hom_R(V, W))$.)
- (11) Let A be a 6 by 6 matrix with entries in \mathbb{R} and characteristic polynomial $f_A(X) := (X^2 + 1)^2 (X 1)(X + 2).$
 - (i) Write down all the possible minimal polynomials $p_A(X)$ for A.
 - (ii) Write down all (up to isomorphism) rational canonical forms of A over \mathbb{R} .