Analysis Qualifying Exam - May 2022

Work through all parts. Your work will be graded for correctness, completeness, and clarity.

Note: Below \mathcal{L} denotes the class of Lebesgue measurable sets in \mathbb{R}^n , *m* the Lebesgue measure on $(\mathbb{R}^n, \mathcal{L})$, and "nonmeasurable" means "not in \mathcal{L} ".

- 1. (a) Define what it means for a function $f:[0,1] \to \mathbb{R}$ to be of bounded variation.
 - (b) Give an example of a sequence $\{f_n\} \subset BV[0,1]$ such that $f_n \to f$ pointwise on [0,1], yet f is not of bounded variation.
 - (c) Explain why the characteristic function of the Cantor set is singular on [0, 1] and not of bounded variation on [0, 1].
- 2. (a) Formulate Tonelli's theorem for functions defined on intervals (bounded or not) in \mathbb{R}^{n+m} .
 - (b) Prove that there is no Borel set $A \subseteq [0,1] \times [0,1]$ such that A_x is countable for all $x \in [0,1]$ and $[0,1] \setminus A^y$ is countable for all $y \in [0,1]$. [Here $A_x = \{y \in [0,1] : (x,y) \in A\}$, etc.]
 - (c) Use Tonelli's theorem to derive the following formula: if $f, g : \mathbb{R}^n \to [0, \infty)$ are measurable functions on \mathbb{R}^n , then

$$\int_{\mathbb{R}^n} f g \, dm = \int_0^\infty \left(\int_{\{x \in \mathbb{R}^n : f(x) \ge t\}} g(x) \, dm(x) \right) \, dt.$$

(d) Let $f : \mathbb{R}^n \to \mathbb{R}$ be a measurable function such that $m(\{x \in \mathbb{R}^n : |f(x)| \ge t\}) \le t^{-2}$ for all t > 0. Prove that there exists a constant C > 0 such that for any measurable subset G of \mathbb{R}^n we have

$$\int_G |f| \, dm \le C \, \sqrt{m(G)}.$$

[Hint: Use c) and split the integral in the t variable appropriately.]

- 3. (a) Explain what it means for a measure space to be complete.
 - (b) Prove that there exists a nonmeasurable subset of $\mathbb{R} \setminus \mathbb{Q}$ (you can use without proof that there exist nonmeasurable sets in \mathbb{R}).
 - (c) Let $\mu = \sum_{r \in \mathbb{Q}} \delta_r$ and $\nu = m_{/(-\infty,0]} + \mu_{c/(0,\infty)}$, where δ_a is the Dirac's delta at a and μ_c is the counting measure. Establish whether or not $(\mathbb{R}, \mathcal{L}, \mu)$, $(\mathbb{R}, \mathcal{L}, \nu)$ are complete.
 - (d) Let $Q = (0,1) \times (0,1) \subseteq \mathbb{R}^2$, and let $N \subseteq (0,1) \subseteq \mathbb{R}$ be a nonmeasurable set. Prove that $E = Q \cup \{(x,0), x \in N\}$ is Lebesgue measurable.
 - (e) Prove that E is not Borel measurable.

- 4. (a) Define what it means for a sequence of functions $\{f_n\}$ on $(\mathbb{R}, \mathcal{L}, m)$ to converge in measure to a function f.
 - (b) Here and in c), d) below let $f_n(x) = (\sin x)^n$. Show that $\{f_n\}$ converges to 0 a.e. in \mathbb{R} .
 - (c) Using the definition show that $\{f_n\}$ does not converge in measure to 0.
 - (d) Using the definition show that $\{f_n\chi_{[0,2\pi]}\}$ converges to 0 in measure.
- 5. On $(\mathbb{R}, \mathcal{L}, m)$ consider the measures

$$\nu = m_{/(-\infty,0]} + \sum_{k=1}^{\infty} \frac{(-1)^k}{k^2} \delta_k, \qquad \mu = m + 2\delta_1 + 3\delta_2.$$

- (a) Explain why ν defines a signed measure, and why it is σ -finite.
- (b) Write the Hahn decomposition of \mathbb{R} with respect to ν .
- (c) Write the Lebesgue-Radon-Nikodym decomposition of ν with respect to μ .
- (d) Compute the Radon-Nikodym derivative, with respect to μ , of the component of ν which is absolutely continuous with respect to μ .
- (e) Show that on $(\mathbb{R}, \mathcal{L})$ we have $m \ll \mu_c$, the counting measure, however there cannot exist a nonnegative μ_c -integrable f such that $dm = f d\mu_c$.
- 6. (a) (i) Show that the operator $Tf(x) = \int_{[0,x]} e^t f(t) dm(t)$ is well-defined and continuous from $L^1([0,1])$ to $L^{\infty}([0,1])$, both spaces being equipped with their natural norms. (ii) Compute the norm of T.
 - (b) Let C[0,1] be equipped with the uniform norm. (i) Show that the operator $Tf = |f|^{1/2}$ is well defined from C[0,1] to itself, and it is continuous. (ii) Show that T is not bounded, in the sense that there is no C such that $||Tf||_u \leq C||f||_u$ for all $f \in C[0,1]$. (iii) How is this not in contradiction with the general theorem about bounded operators and continuity?
 - (c) Explain in what precise sense a normed space X is identified with a subspace of its double dual X^{**} .
 - (d) Give the definition of reflexive normed space and give one example (infinite dimensional, no proof needed).