Analysis Qualifying Exam - May 2018

- Work through all parts included in the 8 items below.
- Start each item on a clean sheet of paper.
- Write only on one side of each sheet.
- Put your name on each sheet of paper you hand in.
- Your work will be graded for correctness, completeness, and clarity.
 - 1. Let (X, \mathcal{M}, μ) be a measure space. Define completeness of the measure μ , with respect of the σ -algebra \mathcal{M} . Prove that there is a σ -algebra $\overline{\mathcal{M}}$ over X and a measure $\overline{\mu}$ on $\overline{\mathcal{M}}$, such that $\mathcal{M} \subseteq \overline{\mathcal{M}}, \overline{\mu}$ is complete, and $\mu(E) = \overline{\mu}(E)$ for all $E \in \mathcal{M}$. Prove that $\overline{\mu}$ is the unique extension of μ which is complete on $\overline{\mathcal{M}}$.
 - 2. Define outer measure. Define μ^* -measurability. State the Hahn-Kolmogorov-Caratheodory Theorem. Outline briefly the construction of the Lebesgue measure.
 - 3. State and prove the Monotone Convergence Theorem.
 - 4. Make use of the Dominated Convergence Theorem, and not any other method, to evaluate the following (dm = Lebesgue measure):

a)
$$\lim_{n \to +\infty} \int_{[0,\infty)} \frac{x + ne^x}{1 + ne^{\pi x}} \, dm, \qquad b$$
) $\lim_{n \to +\infty} \int_{[0,\infty)} \frac{\sin(nx)}{nx^{3/2} + x^2} \, dm$

- 5. Define the average operator A_r on locally integrable functions. Prove that if $f \in L^1_{\text{loc}}(\mathbb{R}^n)$ then $\lim_{r\to 0} A_r f(x) = f(x)$ for a.e. x in \mathbb{R}^n (you can assume the maximal theorem, and the density of continuous functions with compact support in $L^1(\mathbb{R}^n)$.)
- 6. State the Hahn-Banach Theorem for vector spaces over \mathbb{R} . Give a proof of the theorem in the case of extensions from a vector space to a larger vector space of codimension 1.
- 7. Consider the space $\mathcal{X}_0 = C[0,2] \subseteq \mathcal{X} := L^1[0,2]$, both endowed with L^1 norm w.r. to the Lebesgue measure, and the linear functional $T_0 : \mathcal{X}_0 \to \mathbb{C}$ defined as

$$T_0 f = \int_0^2 t^2 f(t) dt,$$

- a) Show that T_0 is bounded, and compute $||T_0||$ from the definition of operator norm (and not any other method).
- b) Show that if $f_0 = \chi_{[0,1]}$, an element of $\mathcal{X} \setminus \mathcal{X}_0$, then there is a linear extension T of T_0 defined on the space $\mathcal{X}_0 + \mathbb{R}f_0$ which is not bounded (find such T explicitly).
- 8. On a σ -finite measure space (X, \mathcal{M}, μ) consider the map $J: g \to \phi_g$

$$\phi_g(f) = \int_X fg \, d\mu$$

Assume as given that for $1 \le p \le \infty$ the map in J is an isometry from L^q to $(L^p)^*$, where $p^{-1} + q^{-1} = 1$, and that if for some g measurable ϕ_g is well defined and in $(L^p)^*$ then $g \in L^q$. Prove that if $1 \le p < \infty$ then J is surjective. Show that J is not in general surjective if $p = \infty$ (provide a counterexample).