Analysis Qualifying Exam - August 2018

- Work through all parts included in the 8 items below.
- Start each item on a clean sheet of paper.
- Write only on one side of each sheet.
- Put your name on each sheet of paper you hand in.
- Your work will be graded for correctness, completeness, and clarity.
 - 1. Outline the construction of a set in [0,1] which is not Lebesgue measurable.
 - 2. Define the concept of measurability of real-valued functions on a measure space (X, \mathcal{M}) . Show that χ_E is measurable if and only if $E \in \mathcal{M}$. Show that the sum of two measurable functions is measurable.
 - 3. State Fatou's Lemma, on a measure space (X, \mathcal{M}, μ) . For given measurable sets $A, B \in \mathcal{M}$ consider the sequence of functions

$$f_n = \begin{cases} \chi_A & \text{if } n \text{ odd} \\ \chi_B & \text{if } n \text{ even.} \end{cases}$$

Give a necessary and sufficient condition on A, B so that equality holds in Fatou's lemma applied to the sequence $\{f_n\}$.

4. Make use of the Dominated Convergence Theorem, and not any other method, to evaluate the following (dm = Lebesgue measure):

a)
$$\lim_{n \to +\infty} \int_{[0,\infty)} \frac{n(1 - e^{-x/n})}{1 + x^4} \, dm, \qquad b) \lim_{n \to +\infty} \int_{[0,\infty)} \frac{\sin(nx)}{nx^{3/2} + x^2} \, dm$$

- 5. Define convergence in measure on a measure space (X, \mathcal{M}, μ) . Assume the following result: if $\{f_n\}$ is Cauchy in measure then there is a subsequence $\{f_{n_k}\}$ converging a.e. to a measurable function f. Using this result, and not any other method, prove: a) if $f_n \to f$ in L^1 then there exists $\{f_{n_k}\}$ s.t. $f_{n_k} \to f$ a.e.; b) L^1 is complete.
- 6. Define positive/negative/null sets for a signed measure ν on (X, \mathcal{M}) . State and prove the Hahn decomposition theorem (you can assume without proof that a measurable set with positive and finite measure contains a positive subset, with positive measure).
- 7. Consider the space $\mathcal{X}_0 = C[0,2] \subseteq \mathcal{X} := L^1[0,2]$, both endowed with L^1 norm w.r. to the Lebesgue measure, and the linear functional $T_0 : \mathcal{X}_0 \to \mathbb{C}$ defined as

$$T_0 f = \int_0^2 t e^{-t} f(t) dt,$$

- a) Show that T_0 is bounded, and compute $||T_0||$ from the definition of operator norm (and not any other method).
- b) Show that if $f_0 = \chi_{[0,1]}$, an element of $\mathcal{X} \setminus \mathcal{X}_0$, then there is a linear extension T of T_0 defined on the space $\mathcal{X}_0 + \mathbb{R}f_0$ which is not bounded (find such T explicitly).
- 8. State and prove the Schwarz inequality and the Triangle inequality on a Hilbert space H.